This is the second in a series of posts from the article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. Following is an excerpt from the article regarding how our 3D cell architecture enables us to incorporate a 100% silicon anode. Our flat-cell architecture can take full advantage of a number of advances in electrode chemistry. To understand

IEEE Spectrum recently published an article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery,” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. It describes how our patented 3D cell architecture and silicon wafer production produces a lithium-ion battery with increased energy density and improved safety. I’ll be serializing key parts of the article over the next few posts. Following is the first excerpt from the IEEE

The first three posts in this series described how Dr. Richard Swanson started SunPower, how T.J. Rodgers forever changed SunPower’s future, and how Cypress production processes helped SunPower combine innovative technology with low-cost, high-volume production to transform the solar industry. The final post illustrates the results of these events. Creating $7.6 Billion of Shareholder Value SunPower began commercialization of its high-efficiency solar panels in 2004. Revenue quickly grew from $10.9

In the second post of this series, I described how a chance encounter between two old college classmates forever changed SunPower’s fortunes, and that semiconductor and solar cell production had little in common. This post describes how Cypress process controls and production innovations were implemented to accelerate learning and achieve low-cost, high-volume production of high-performance solar cells. The Cypress Years, Part Two: Processes, Autoline and Accelerated Learning Chuck Stone was

In the first post of this series, I described how Dr. Richard Swanson, a professor of electrical engineering at Stanford University, founded SunPower and developed innovative, high-performance solar cells between 1985 and 2001. This post describes how a chance encounter with an old college classmate would forever change SunPower’s fortunes. And that semiconductor and solar cell production have little in common. The Cypress Years, Part One: Semiconductors and Solar Cells Cypress

The Enovix model for the development and production of our 3D silicon lithium-ion cells closely resembles the SunPower model for low-cost, high-performance solar cells. This is due to our relationships with Cypress Semiconductor, and, especially, with T.J. Rodgers. I recently had an opportunity to learn more about the history and legacy of SunPower, including interviews with T.J. Rodgers, founder of Cypress Semiconductor, and with Chuck Stone, Enovix vice president of

The U.S. Department of Energy’s Argonne National Laboratory has named Venkat Srinivasan the next director of the Argonne Collaborative Center for Energy Storage Science (ACCESS). ACCESS is a collaborative of scientists and engineers from across Argonne that helps public and private-sector customers create energy storage solutions through multidisciplinary research. Venkat holds a special place at Enovix. He was a technical advisor to the Enovix co-founders at the inception of the

The Institute of Engineering and Technology (IET) traces its heritage to 1871. Today its mission is to, “inspire, inform and influence the global engineering community, supporting technology innovation to meet the needs of society.” E&T (Engineering and Technology) is the IET’s award-winning monthly magazine and associated website for professional engineers. E&T recently published an article by Holly Cave titled, “Charging ahead: the bid for better EV batteries.” The article’s premise

The last few months of 2016, I wrote several posts about lithium-ion safety issues. This included reporting on the cost of the Samsung Galaxy Note 7 failure, and that it was just the latest in a series of high-profile lithium-ion battery mishaps. Previously, I had written about how Li-ion battery safety problems were the legacy of Sony’s decision to repurpose audio cassette magnetic recording tape equipment for battery production in

On Friday, November 18, I had the privilege of participating on a panel at the 2016 Bay Area Battery Summit: Energy Storage at Inflection Point. The one-day summit, organized by CalCharge and SLAC National Accelerator Laboratory, addressed fundamental questions about energy storage Research, Development, Demonstration and Deployment (RDD&D). I was a member of the “Innovation in Energy Storage Panel,” moderated by Brian J. Bartholomeusz, Executive Director Innovation Transfer at Stanford