This is the fourth (and final) in a series of posts from the IEEE Spectrum article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery,” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. The article describes how we use photolithography and wafer processing techniques to fabricate our 3D Silicon™ Lithium-ion battery. To fabricate the Enovix battery, we begin with a wafer of silicon that’s 1 millimeter thick. This doesn’t

Power Electronics is a Penton publication. Its expert editors report on the engineering, design and integration of power electronic system applications, such as battery-powered systems, consumer, commercial and industrial power electronic systems; and power systems for electric and automotive transportation. In an August 2, 2017 article, Sam Davis, editor-in-chief, writes that, “Large-scale adoption of wearable devices will depend on availability of two important technologies: improved batteries and higher density transistor

This is the third in a series of posts from the IEEE Spectrum article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery,” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. The article describes and illustrates how thermal runaway can occur in a conventional Li-ion battery. The polymer separator is an inactive material and has to be physically longer and wider than the electrodes to make sure

This is the second in a series of posts from the article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. Following is an excerpt from the article regarding how our 3D cell architecture enables us to incorporate a 100% silicon anode. Our flat-cell architecture can take full advantage of a number of advances in electrode chemistry. To understand

IEEE Spectrum recently published an article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery,” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. It describes how our patented 3D cell architecture and silicon wafer production produces a lithium-ion battery with increased energy density and improved safety. I’ll be serializing key parts of the article over the next few posts. Following is the first excerpt from the IEEE

The U.S. Department of Energy’s Argonne National Laboratory has named Venkat Srinivasan the next director of the Argonne Collaborative Center for Energy Storage Science (ACCESS). ACCESS is a collaborative of scientists and engineers from across Argonne that helps public and private-sector customers create energy storage solutions through multidisciplinary research. Venkat holds a special place at Enovix. He was a technical advisor to the Enovix co-founders at the inception of the

The Institute of Engineering and Technology (IET) traces its heritage to 1871. Today its mission is to, “inspire, inform and influence the global engineering community, supporting technology innovation to meet the needs of society.” E&T (Engineering and Technology) is the IET’s award-winning monthly magazine and associated website for professional engineers. E&T recently published an article by Holly Cave titled, “Charging ahead: the bid for better EV batteries.” The article’s premise

The last few months of 2016, I wrote several posts about lithium-ion safety issues. This included reporting on the cost of the Samsung Galaxy Note 7 failure, and that it was just the latest in a series of high-profile lithium-ion battery mishaps. Previously, I had written about how Li-ion battery safety problems were the legacy of Sony’s decision to repurpose audio cassette magnetic recording tape equipment for battery production in

On Friday, November 18, I had the privilege of participating on a panel at the 2016 Bay Area Battery Summit: Energy Storage at Inflection Point. The one-day summit, organized by CalCharge and SLAC National Accelerator Laboratory, addressed fundamental questions about energy storage Research, Development, Demonstration and Deployment (RDD&D). I was a member of the “Innovation in Energy Storage Panel,” moderated by Brian J. Bartholomeusz, Executive Director Innovation Transfer at Stanford

If this is the first post you’ve read in this series, BUILDING A BETTER BATTERY, you may want to take a look at Parts One, Two, Three, and Four for complete context. A Better Business Model Enovix was conceived with a conviction that building a better battery involves more than just technology; it requires a new business model with ownership of intellectual property (IP) and direct production control. Since 2012,