Christopher Mims writes the weekly KEYWORDS technology column for The Wall Street Journal. Last week he interviewed our CEO, Harrold Rust, for his latest column, The Battery Boost We’ve Been Waiting for Is Only a Few Years Out (you may need a WSJ subscription to access the full article). The column opens with the following. The batteries that power our modern world—from phones to drones to electric cars—will soon experience

In the last post, The Technology Path to Modern Mobile Devices, I published the first excerpt from an article “A New and Innovative 3D Architecture for Lithium Batteries.” Ashok Lahiri, Enovix co-founder and CTO, authored the article that appears in the latest issue of Applied Wireless Technology. Following is the second excerpt. Physics and Chemistry Mobile device technology and conventional Li-ion battery technology are rooted in two different fields of

As an innovator in advanced lithium-ion battery technology, Enovix follows the work of others in the field closely. Researchers have long tried to develop safe, high-energy batteries using lithium (Li) metal as the active anode material. A July 12, 2017 article by David L. Chandler in MIT News, “Study suggests route to improving rechargeable lithium batteries,” reports on a study that indicates smooth surfaces may prevent harmful deposits from working

Just over a year ago, I wrote a blog post titled THE APPLE WATCH: A Roadblock to Its Future. It referenced an article from Bloomberg Technology that began, “Apple Inc. has hit roadblocks in making major changes that would connect its Watch to cellular networks and make it less dependent on the iPhone.” The article concluded that, “The source of the delay is that current cellular chips consume too much

Power Electronics is a Penton publication. Its expert editors report on the engineering, design and integration of power electronic system applications, such as battery-powered systems, consumer, commercial and industrial power electronic systems; and power systems for electric and automotive transportation. In an August 2, 2017 article, Sam Davis, editor-in-chief, writes that, “Large-scale adoption of wearable devices will depend on availability of two important technologies: improved batteries and higher density transistor

This is the second in a series of posts from the article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. Following is an excerpt from the article regarding how our 3D cell architecture enables us to incorporate a 100% silicon anode. Our flat-cell architecture can take full advantage of a number of advances in electrode chemistry. To understand

IEEE Spectrum recently published an article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery,” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. It describes how our patented 3D cell architecture and silicon wafer production produces a lithium-ion battery with increased energy density and improved safety. I’ll be serializing key parts of the article over the next few posts. Following is the first excerpt from the IEEE

The Institute of Engineering and Technology (IET) traces its heritage to 1871. Today its mission is to, “inspire, inform and influence the global engineering community, supporting technology innovation to meet the needs of society.” E&T (Engineering and Technology) is the IET’s award-winning monthly magazine and associated website for professional engineers. E&T recently published an article by Holly Cave titled, “Charging ahead: the bid for better EV batteries.” The article’s premise

On Friday, November 18, I had the privilege of participating on a panel at the 2016 Bay Area Battery Summit: Energy Storage at Inflection Point. The one-day summit, organized by CalCharge and SLAC National Accelerator Laboratory, addressed fundamental questions about energy storage Research, Development, Demonstration and Deployment (RDD&D). I was a member of the “Innovation in Energy Storage Panel,” moderated by Brian J. Bartholomeusz, Executive Director Innovation Transfer at Stanford

I’ve written several posts over the past two months about the Galaxy Note 7 battery fires that led Samsung to remove it from the market. In my prior post, I reported, from a Wall Street Journal article, that “investors have shaved off roughly $20 billion in Samsung’s market value. The company has said the recall would cost it $5 billion or more, including lost sales.” The big question now is