In the last post, A New, Modern Li-ion Battery Platform, I published the third excerpt from an article “A New and Innovative 3D Architecture for Lithium Batteries.” Ashok Lahiri, Enovix co-founder and CTO, authored the article that appears in the latest issue of Applied Wireless Technology. Following is the fourth excerpt that describes the unique construction of our 3D silicon lithium-ion battery. Photolithography and Wafer Production The Enovix battery manufacturing

In the last post, Physics and Chemistry, I published the second excerpt from an article “A New and Innovative 3D Architecture for Lithium Batteries.” Ashok Lahiri, Enovix co-founder and CTO, authored the article that appears in the latest issue of Applied Wireless Technology. Following is the third excerpt. A New, Modern Li-ion Battery Platform In 2007, three cofounders and I started Enovix Corporation, initially under the operating name microAzure. Two

Ashok Lahiri, Enovix co-founder and CTO, authored an article, “A New and Innovative 3D Architecture for Lithium Batteries”, that appears in the latest issue of Applied Wireless Technology (you can read the complete article beginning on page 12 of the issue). Following is an excerpt from the article, and I’ll post a few more over the coming weeks. A modern compact, mobile device, such as the smartphone shown below, is only

This is the fourth (and final) in a series of posts from the IEEE Spectrum article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery,” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. The article describes how we use photolithography and wafer processing techniques to fabricate our 3D Silicon™ Lithium-ion battery. To fabricate the Enovix battery, we begin with a wafer of silicon that’s 1 millimeter thick. This doesn’t

Power Electronics is a Penton publication. Its expert editors report on the engineering, design and integration of power electronic system applications, such as battery-powered systems, consumer, commercial and industrial power electronic systems; and power systems for electric and automotive transportation. In an August 2, 2017 article, Sam Davis, editor-in-chief, writes that, “Large-scale adoption of wearable devices will depend on availability of two important technologies: improved batteries and higher density transistor

IEEE Spectrum recently published an article, “How to Build a Safer, More Energy-Dense Lithium-ion Battery,” authored by Ashok Lahiri, Nirav Shah, and Cam Dales of Enovix. It describes how our patented 3D cell architecture and silicon wafer production produces a lithium-ion battery with increased energy density and improved safety. I’ll be serializing key parts of the article over the next few posts. Following is the first excerpt from the IEEE

The first three posts in this series described how Dr. Richard Swanson started SunPower, how T.J. Rodgers forever changed SunPower’s future, and how Cypress production processes helped SunPower combine innovative technology with low-cost, high-volume production to transform the solar industry. The final post illustrates the results of these events. Creating $7.6 Billion of Shareholder Value SunPower began commercialization of its high-efficiency solar panels in 2004. Revenue quickly grew from $10.9

In the second post of this series, I described how a chance encounter between two old college classmates forever changed SunPower’s fortunes, and that semiconductor and solar cell production had little in common. This post describes how Cypress process controls and production innovations were implemented to accelerate learning and achieve low-cost, high-volume production of high-performance solar cells. The Cypress Years, Part Two: Processes, Autoline and Accelerated Learning Chuck Stone was

In the first post of this series, I described how Dr. Richard Swanson, a professor of electrical engineering at Stanford University, founded SunPower and developed innovative, high-performance solar cells between 1985 and 2001. This post describes how a chance encounter with an old college classmate would forever change SunPower’s fortunes. And that semiconductor and solar cell production have little in common. The Cypress Years, Part One: Semiconductors and Solar Cells Cypress

The Enovix model for the development and production of our 3D silicon lithium-ion cells closely resembles the SunPower model for low-cost, high-performance solar cells. This is due to our relationships with Cypress Semiconductor, and, especially, with T.J. Rodgers. I recently had an opportunity to learn more about the history and legacy of SunPower, including interviews with T.J. Rodgers, founder of Cypress Semiconductor, and with Chuck Stone, Enovix vice president of