

Applications, Features & Benefits

Designed for wearable and IoT

High energy density

Small form factor solution

Compatible with standard lithium-ion battery safety circuits and battery management systems

Cell Dimensions

All dimensions are millimeters (mm) @ 0% SOC, Beginning of Life XYZ and terrace width are maximum values. All other values are typical.

Cell Characteristics

Capacity ¹			
Minimum	316 mAh		
Cycle Life (minimum cycles) ²			
25°C to 80% capacity retention	500 cycles		
Cell Voltage			
Charge cut-off	4.35 V		
Discharge cut-off	3.00 V		
Average discharge ¹	3.63 V		
Energy			
Minimum	1.15 Wh		
	·		

Charge Conditions

	Constant current (0.7C)	221 mA	
	Taper current cut-off (0.04C)	13 mA	
Discharge Conditions			
	Continuous current (0.7C)	221 mA	

The information on this Cell Product Brief is believed to be accurate, is typical of the product in production, and is not a guarantee of performance. Specifications and characteristics are subject to change without notice.

Contact Enovix at **sales@enovix.com** for specific information regarding this cell.

¹Test condition: 0.2C discharge rate

 $^{^{2}\}text{Test condition:}\ 0.7\text{C}\ \text{charge to}\ 4.35\ \text{V}\ \text{with}\ 0.04\text{C}\ \text{cutoff,}\ 0.5\text{C}\ \text{discharge to}\ 3.0\ \text{V}$